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1 Separation Results and Weak Topologies

1.1 Separation results in topological vector spaces

Last time, we had the geometric Hahn-Banach theorem.

Theorem 1.1. Let X be a real TVS, and let G be a nonempty, open, convex subset with
x ∈ X \G. Then there exists

• an f ∈ X∗ and α ∈ R such that f(x) = α and f(G) ⊆ (−∞, α),

• a closed affine hyperplane M = {f = α} such that x ∈M and M ∩G = ∅.

This separates a point from a convex set. What about separating two convex sets?

Theorem 1.2. Let X be a real TVS, and let A,B be disjoint convex sets with A open.
Then there are an f ∈ X∗ and α ∈ R such that A ⊆ {f < α} and B ⊆ {f ≥ α}. If B is
also open, then B ⊆ {f > α} (strict separation).

Remark 1.1. This proof is difficult to imagine algebraically, but the main idea is only 1
step on top of the previous theorem.

Proof. Let G := A − B = {a − b : a ∈ A, b ∈ B}. This is convex, and we can also write
G =

⋃
b∈B(A− b), which shows that G is open. Since A ∩B = ∅, 0 /∈ G. By the previous

theorem, we find f ∈ X∗ such that f [G] ⊆ (−∞, 0). This set is f [G] = f(A) − f(B). So
α := sup f [A] ≤ inf[B]. Then A ⊆ {f ≤ α} and B ⊆ {f ≥ α}. Because A is open, we can
get A ⊆ {f < α}. If B is open, we can do the same.

1.2 Separation results in locally convex spaces

Theorem 1.3. Let X be a real LCS, and let A,B be disjoint, closed, convex subsets. If B
is compact, they are strictly separated.

Lemma 1.1. Let K ⊆ X be compact, and let V ⊇ K be open. Then there is an open
neighborhood U 3 0 such that K + U ⊆ V .
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Proof. For each x ∈ K, there is a neighborhood Ux of 0 such that x + Ux ⊆ V . Because
addition is continuous in X, there is a smaller neighborhood Wx 3 0 such that Wx−Wx ⊆
U . Let x ∈ K, and suppose x ∈ xi +Wxi By compactness, there exist x1, . . . , xn ∈ K such
that K ⊆

⋃n
i=1(xi +Wxi). Now take W :=

⋂n
i=1Wxi .

Let x ∈ K, and say x ∈ xi+Wxi . Then x+W ⊆ xi+Wxi+W ⊆ xi+Wxi+Wxi ⊆ V .

Corollary 1.1. If X is an LCS, we may take U to be convex.

Proof. B ⊆ X \A. The lemma gives a convex open U 3 0 such taht (B+U)∩A = ∅. The
previous version of the theorem gives f ∈ X∗ and α ∈ R such that f [B] + f [U ] ⊆ {f < α}
and A ⊆ {f ≥ α}. B is compact, so f [B] is compact; so there exists some ε > 0 such that
f [B] ≤ α− ε. Also, f [A] ≥ α.

Corollary 1.2. Let X be a real LCS, let A be closed and convex, and let x ∈ X \A. Then
x,A are strictly separated.

Corollary 1.3. Let X be a real LCS, and let A ⊆ X. Then coA is the intersection of all
closed half-spaces containing A.

Corollary 1.4. Let X be a real LCS, and let A ⊆ X. Then spanA is the intersection of
all closed hyperplanes containing A.

Remark 1.2. These theorems all hold for complex vector spaces, as well. Here’s how we get
the complex vector space cases: If f : X → C. then let f = Re f . Then f = g(x)− ig(ix).
In this case, when we say that two sets are separated, we mean the real part of f separates
them.

1.3 Weak topologies

Example 1.1. Let (X,Σ, µ) be a finite measure space with no atoms (like the unit interval).
Let L0(µ) be the space of measurable functions X → C with the topology of convergence
in measure. So the topology is generated by sets of the form {f : µ{|f − g| > ε} < ε} for
each g ∈ L0.

There are no opne, convex sets besides the whole space. Assume U is convex with
U 3 0. Then U ⊇ {f : µ{|f | > ε} < ε}. Let n > 1/ε. If 1 ≤ i ≤ n, define gi = n(g1[ i−1

n
, i
n
]).

Then g = 1
n(g1, . . . , gn) ∈ U .

Example 1.2. Let C(Rn) with the seminorms pK(f) := ‖f |K‖ for all compact K ⊆ Rn.
Then if L ∈ C(RN )∗, then |L| ≤ αpK for some K. There exists a finite signed (or complex-
valued) Borel measure µ ∈M(K) such that L(f) =

∫
f dµ for all f ∈ C(Rn).

Let X be an LCS over F.
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Definition 1.1. If x ∈ X and x∗ ∈ X∗, we can write 〈x, x∗〉 as x∗(x); we may also write
〈x∗, x〉.1

Definition 1.2. The weak topology on X is the topology generated by the seminorms
{|f | : f ∈ X∗}. The weak* topology on X∗ is the toplogy generated by {|x̂| : x ∈ X},
where x̂(f) := f(x).

This is not stronger than the original topology.

Remark 1.3. Some authors refer to σ(X,X∗) as the weak topology on X and σ(X∗, X)
as the weak* topology on X∗.

Theorem 1.4. Let X be a locally convex space.

1. (X,wk)∗ = X∗.

2. (X∗,wk*)∗ = X.

Lemma 1.2. Let X be any vector space, and let f, g1, . . . , gn be linear functionals such
that ker(f) ⊆

⋂n
i=1 ker gi. Then f ∈ span{g1, . . . , gn}.

Now let’s prove the theorem.

Proof. 1. We need to check that X∗ ⊆ (X,wk)∗. If f ∈ X∗, then |f | is a generating
seminorm for the weak topology on X, so f ∈ (X,wk)∗.

2. (⊆): This is from the definition of wk*.

(⊇): Suppose f : X∗ → F is continuous for the wk* topology. Then there exist scalars
α1, . . . , αn > 0 and x1, . . . , xn such that |f | ≤

∑
i αi|x̂i|. Then ker(f) ⊆

⋂n
i=1 ker x̂i.

The lemma then tells us that f =
∑n

i=1 βix̂i = (
∑n

i=1 βixi)
∧ ∈ X.

For clarity, we will use the terms open, closed, and continuous to refer to the original
toplogy on a space. We will use the terms weak-open, weak-closed, and weak-continuous
to refer to the weak/weak* topology on a space.

1Conway’s textbook says you can write it either way around because of some category theoretic duality.
Professor Austin is pretty sure that it is because no one can remember which way it goes.
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